Inhibition of development of Na⁺-dependent hexose transport in renal epithelial LLC-PKl cells by differentiation-stimulating factor for myeloid leukemic cells/leukemia inhibitory factor

Mikio Tomida¹, Yuri Yamamoto-Yamaguchi¹, Motoo Hozumi¹, William Holmes², David G. Lowe² and David V. Goeddel²

¹Department of Chemotherapy, Saitama Cancer Center Research Institute, Ina-machi, Kitaadachi-gun, Saitama-Ken 362, Japan and ²Department of Molecular Biology, Genentech, Inc., 460 Pt. San Bruno Boulevard, South San Francisco, CA 94080, USA

Received 27 April 1990; revised version received 2 June 1990

Differentiation-stimulating factor (D-factor)/leukemia inhibitory factor is a cytokine inducing differentiation of mouse myeloid leukemic MI-T22 cells. The effect of recombinant human D-factor on growth and differentiation of pig kidney LLC-PK₁ cells was examined. LLC-PK₁ cells did not concentrate α-methylglucoside during their early growth in culture but developed the capacity to concentrate this hexose as they reached confluence and their growth rate decreased. Purified D-factor caused dose-dependent inhibition of the development of this concentrative capacity. It did not affect the growth rate of the cells, but inhibited the formation of multicellular domes in confluent cultures. LLC-PK₁ cells were found to have high-affinity binding sites (831 per cell) for D-factor with a dissociation constant of 197 pM.

Pig kidney cell; Sugar transport; Differentiation-stimulating factor; Leukemia inhibitory factor; Differentiation-inhibiting activity

1. INTRODUCTION

Previously, we purified a cytokine inducing differentiation of mouse myeloid leukemic M1-T22 cells into macrophages [1,2] and designated this cytokine as Dfactor. We also characterized D-factor receptors on M1 cells [3] and isolated complementary DNA encoding human D-factor [4]. Metcalf and coworker also purified the same cytokine [5], isolated complementary DNA for the cytokine [6] and named the cytokine leukemia inhibitory factor (LIF). D-factor/LIF was found to be identical to human interleukin that supported proliferation of murine leukemia DA-la cells [7] and differentiation inhibiting activity that inhibited differentiation of pluripotent mouse embryonal stem cell lines [8,9]. In addition, D-factor/LIF stimulated boneresorbing activity in mouse fetal calvaria [10], synthesis of acute phase plasma proteins in hepatoma cells [11] and differentiation of rat sympathetic neurons [12]. Thus D-factor, like interleukin 6, affects the growth and differentiation of a wide variety of cells. We screen-

Correspondence address: M. Tomida, Department of Chemotherapy, Saitama Cancer Center Research Institute, Ina-machi, Kitaadachigun, Saitama-Ken 362, Japan

Abbreviations: D-factor, differentiation-stimulating factor; LIF, leukemia inhibitory factor; α -meG, methyl α -D-glucopyranoside; cAMP, adenosine 3',5'-cyclic monophosphate; HBSS, Hank's balanced salt solution; Hepes, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid

ed various cell lines for D-factor receptors, and found that some kidney cell lines have relatively higher numbers of D-factor receptors. In the present work, we examined the effects of D-factor on the growth and differentiation of LLC-PK₁ cells, a dome-forming cell line derived from juvenile pig kidney [13]. The dome is a fluid-filled hemicyst and is considered to be, at least in part, a manifestation of transepithelial ion and water transport [14]. In addition, LLC-PK₁ cells show Na⁺-dependent hexose transport activity [15–18]. This activity is normally found only in terminally differentiated epithelia such as those of the kidney and intestine.

2. MATERIALS AND METHODS

2.1. Cells and cell culture

The pig kidney epithelial cell line LLC-PK₁ (ATCC CRL1392) was obtained from Flow Laboratories (Tokyo, Japan) at passage 190, and cultured in a 50:50 mixture of Dulbecco's modified Eagle's medium and Ham's F12 (Flow Laboratories) supplemented with 10% fetal calf serum (Gibco, Grand Island, NY) and $100 \,\mu\text{g/ml}$ of streptomycin in an atmosphere of 5% CO₂ in air at 37°C. Cells in confluent monolayers were separated with 0.25% trypsin and 0.02% EDTA and subcultured at a split ratio 1:10. Cultures reached confluence on day 3-4 after subculture.

2.2. Sugar uptake

Sugar uptake was measured by the method of Amsler and Cook [15]. The cells were plated in Costar 6-well dishes (35 mm diameter), at 1.5×10^5 cells per well, and the medium was changed every 2 days. D-Factor was added at the time of the first medium change 2 days after plating. For assay of uptake, the medium was poured off, and

the monolayers were rinsed twice with 2 ml of Hank's balanced salt solution (HBSS) buffered at pH 7.3 with 10 mM 4-(2-hydroxyethyl)1-piperazine-ethanesulfonic acid (Hepes). The uptake assay was initiated by addition of 1 ml of HBSS containing [\$^{14}\$C]methyl-\$\alpha\$-D-glucopyranoside (\$\alpha\$-meG, Amersham) at a final concentration of 100 \$\mu M\$ and 0.2 \$\mu Ci/ml\$. After incubation at 37°C for 60 min, the medium was removed, and the monolayers were washed three times with 2 ml of ice-cold HBSS. Then they were solubilized in 1 ml of 1% sodium dodecyl sulfate, and radioactivity was measured using ACS III (Amersham) as scintillation liquid. For determination of cell protein, the monolayers were solubilized in 0.25 N NaOH, and protein was determined by the dye fixation method (Bio-Rad Laboratories) with bovine serum albumin as a standard.

2.3. D-factor

D-factor was purified to homogeneity from conditioned medium of CHO cells transfected with the plasmid containing cDNA encoding human D-factor [4]. Recombinant human D-factor and native mouse D-factor induced differentiation of M1-T22 cells at similar concentrations. Purified recombinant human D-factor (0.5 ng/ml) induced 50% phagocytic cells in M1-T22 cell cultures.

2.4. Cellular binding of 125 I-D-factor

D-factor was iodinated with chloramine-T in the presence of 12.5% dimethyl sulfoxide as described previously [3]. The specific radioactivity of the 125 I-D-factor preparation was 1.6×10^5 cpm/ng protein.

For assay of binding of ¹²⁵I-D-factor, LLC-PK₁ cells were plated in 12-well plates. The confluent cells (8.88×10⁵/well) obtained by culture for 3 days were washed twice with phosphate-buffered saline and incubated in 1 ml of culture medium containing ¹²⁵I-D-factor and 25 mM Hepes with or without 30-fold excess of unlabelled D-factor for 3 h at 21°C as described [3]. After incubation, the medium was removed and the cells were washed three times with cold phosphate-buffered saline. Then they were solubilized in 1 ml of 1 N NaOH, and their radioactivity was measured in a gamma-counter. Specific binding was determined by subtracting the binding in the presence of 30-fold excess of unlabelled D-factor.

2.5. Enzyme activities

Cultures were rinsed 3 times with ice-cold 0.9% NaCl. Cells were harvested in 1 ml of 0.25 M sucrose with a rubber policeman and sonicated in an ice-bath by 3×15 s bursts at intervals 30 s. Alkaline phosphatase (EC 3.1.3.1) was determined by a reported method [19]. The reaction mixture (0.5 ml) contained 8 mM p-nitrophenylphosphate, 0.5 M 2-amino-2-methyl-1-propanol (pH 10.3) and 25 μ l of cell lysate. After incubation at 37°C for 10 min, the reaction was stopped with 1.5 ml of 0.25 N NaOH. The absorbance of the samples at 410 nm was compared with that of a standard solution of p-nitrophenol.

 γ -Glutamyl transpeptidase (EC 2.3.2.2) was determined as in [18]. The reaction mixture (1 ml) contained 2.2 mM γ -glutamyl-p-nitroanilide, 20 mM glycylglycine, 0.1 M Tris-HCl, pH 8.2, and 100 μ l of cell lysate. After incubation at 37°C for 10 min, the reaction was stopped with 2 ml of 10% acetic acid. The absorbance of the samples at 410 nm was compared with that of a standard solution of p-nitroaniline. Enzyme activities are expressed in μ mol·mg protein $^{-1} \cdot h^{-1}$.

3. RESULTS

3.1. Binding of 125 I-D-factor to LLC-PK1 cells

We examined the bindings of ¹²⁵I-D-factor to various kidney cell lines. ¹²⁵I-D-factor bound to only 2 of the 8 cell lines tested. These two cell lines did not produce D-factor, whereas the other 6 cell lines produced significant amounts of D-factor. Thus even if the cells did not bind ¹²⁵I-D-factor, they might have receptors, because

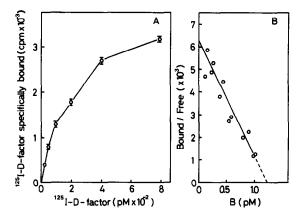


Fig. 1. Binding of ¹²⁵I-D-factor to LLC-PK₁ cells. (A) Specific binding was determined by subtracting the binding in the presence of 30-fold excess of unlabelled D-factor. Points and bars are means ± SE for duplicate determinations. (B) Data plotted by Scatchard's method. B = bound ¹²⁵I-D-factor concentration.

autocrine D-factor might block the binding of ¹²⁵I-D-factor added exogenously.

We analyzed the binding of D-factor to LLC-PK₁ cells as described previously [3]. Scatchard analysis revealed that the cells expressed 831 high affinity D-factor receptors per cell with an apparent dissociation constant of approximately 197 pM (Fig. 1).

3.2. Inhibition of development of Na⁺-dependent hexose transport by D-factor

We examined the effects of D-factor on growth and differentiation of LLC-PK₁ cells. D-factor did not inhibit growth of the cells inoculated at low density, and

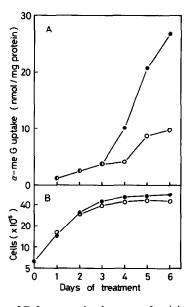


Fig. 2. Effects of D-factor on development of activity for uptake of α -methylglucoside (A) and on growth of the cells (B). Cells were incubated with (Θ) or without (Φ) 20 ng/ml of D-factor from 2 days after plating. Values are means for duplicate determinations.

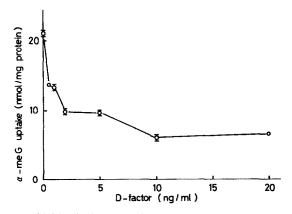


Fig. 3. Inhibition by D-factor of development of activity for uptake of α -methylglucoside. Cells were treated with various amounts of D-factor from 2 days after plating, and sugar uptake was determined after treatment with D-factor for 5 days. Points and bars are means \pm SE for duplicate determinations.

did not stimulate growth of cells inoculated into medium without serum. However, the saturation density of the cells treated with D-factor was slightly lower than that of untreated cells (Fig. 2B). Moreover, although cells treated with D-factor formed confluent monolayers, their formation of multicellular domes was suppressed. In control cultures, domes appeared on day 3 (5 days after plating), and on day 5 there were 97 domes/cm²: 65 small domes and 32 large domes. On the other hand, in cultures treated with D-factor, there were only small domes (29 domes/cm²). In addition, a few round cells were released into the medium from confluent monolayer treated with D-factor, and although the medium was changed every 2 days, it became more acidic than that of control cultures.

In control cultures Na $^+$ -dependent α -methylglucoside transport started on day 4 (Fig. 2A). D-factor inhibited its appearance, causing appreciable inhibition at concentrations of more than 0.5 ng/ml and maximum inhibition at concentrations of more than 10 ng/ml (Fig. 3).

Next, we assayed the activities of the apical marker enzymes, alkaline phosphatase and γ -glutamyl transpeptidase [19]. The activities of these enzymes were low in sparse cultures, but increased after the cells

reached a confluent density (Table I). D-Factor did not inhibit increase in these enzyme activities, and slightly stimulated increase in alkaline phosphatase.

4. DISCUSSION

At confluence, LLC-PK₁ cells simultaneously develop the differentiated properties of apical Na +-hexose cotransport, apical marker enzyme activities and transepithelial fluid transport. In this work, we showed that recombinant human D-factor inhibited development of Na⁺-dependent hexose transport in pig kidney cells. It also inhibited dome formation, but did not inhibit increase in the activities of alkaline phosphatase and γ -glutamyl transpeptidase. Van Den Bosh et al. [17] isolated several subclones which differed with respect to development of Na⁺-dependent hexose uptake from LLC-PK1 cells and showed that the expressions of Na⁺-dependent hexose transport and the activities of alkaline phosphatase and \(\gamma\)-glutamyl transpeptidase were not correlated. These results suggest that the expressions of several differentiated characteristics are regulated independently. Na+dependent hexose transport activity is a typical characteristic of renal proximal tubules. Its expression is influenced by the time after confluency and by the Dglucose concentration in the growth medium [16]. The Friend cell inducer hexamethylene bisacetamide and phosphodiesterase inhibitors, including dibutyryl cAMP, theophylline and 1-methyl-3-isobutylxanthine, accelerated the development of hexose concentrating capacity [15]. On the other hand, the tumor promotor 12-O-tetradecanoylphorbol-13-acetate inhibited the development of the concentrative capacity. The cAMP levels in the cells were determined, but were found not to explain the mechanism of inhibition of 12-O-tetradecanoyl phorbol-13-acetate [15].

Various cytokines that affect the growth and differentiation of myeloid cells and lymphocytes have been identified recently. Many of these cytokines were found to be active on a wide variety of other cells besides the blood cells. However, the effects of these cytokines on the differentiation of LLC-PK₁ cells have not yet been examined. To our knowledge, this is the first report that

 $Table\ I$ Effects of D-factor on inductions of marker enzymes in LLC-PK $_1$ cells

Cells		Alkaline phosphatase	γ-Glutamyl transpeptidase
Day	D-factor	$(\mu \text{mol} \cdot \text{mg}^{-1} \cdot \text{h}^{-1})$	$(\mu \text{mol} \cdot \text{mg}^{-1}\text{h}^{-1})$
1	_	11.0 ± 0.2^{b}	9.6 ± 0.2
5		53.2 ± 2.8	42.2 ± 3.5
5	+ a	70.9 ± 4.3	44.1 ± 2.3

^a Cells (3×10⁵) were incubated into 60 mm dishes. D-factor (20 ng/ml was added at the time of the first medium change 2 days after plating, and the cells were harvested after treatment with D-factor for 5 days

^b Mean ± SE of determinations in 4 dishes.

a well characterized cytokine, D-factor, inhibits the development of Na⁺-dependent hexose transport in these cells.

We found that LLC-PK₁ cells have specific receptors for D-factor and that the affinity and number of these receptors are similar to those on myeloid leukemic M1 cells [3] and mouse embryonal stem cells [8,9]. The structure of the D-factor receptor and mechanism of action of D-factor on these cells remain to be examined.

Acknowledgements: This work was partly supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture of Japan, and a grant from the Ministry of Health and Welfare for a Comprehensive 10-Year Strategy of Cancer Control, Japan and by Genentech, Inc., USA.

REFERENCES

- [1] Tomida, M., Yamamoto-Yamaguchi, Y. and Hozumi, M. (1984) J. Biol. Chem. 259, 10978-10982.
- [2] Tomida, M., Yamamoto-Yamaguchi, Y. and Hozumi, M. (1984) FEBS Lett. 178, 291-296.
- [3] Yamamoto-Yamaguchi, Y., Tomida, M. and Hozumi, M. (1986) Exp. Cell Res. 164, 97-102.
- [4] Lowe, D.G., Nunes, W., Bombara, M., McCabe, S., Ranges, G.E., Henzel, W., Tomida, M., Yamamoto-Yamaguchi, Y., Hozumi, M. and Goeddel, D.V. (1989) DNA 8, 351-359.

- [5] Hilton, D.J., Nicola, N.A., Gough, N.M. and Metcalf, D. (1988) J. Biol. Chem. 263, 9238-9243.
- [6] Gearing, D.P., Gough, N.M., King, J.A., Hilton, D.J., Nicola, N.A., Simpson, R.J., Nice, E.C., Kelso, A. and Metcalf, D. (1987) EMBO J. 6, 3995-4002.
- [7] Moreau, J.-F., Donaldson, D.D., Bennett, F., Witek-Giannotti, J., Clark, S.C. and Wong, G.G. (1988) Nature 336, 690-692.
- [8] Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Metcalf, D., Nicola, N.A. and Gough, N.M. (1988) Nature 336, 684-687.
- [9] Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M. and Rogers, D. (1988) Nature 336, 688-690.
- [10] Abe, E., Tanaka, H., Ishimi, Y., Miyaura, C., Hayashi, T., Nakagawa, H., Tomida, M., Yamaguchi, Y., Hozumi, M. and Suda, T. (1986) Proc. Natl. Acad. Sci. USA 83, 5958-5962.
- [11] Baumann, H. and Wong, G.G. (1989) J. Biol. Chem. 143, 1163-1167.
- [12] Yamamori, T., Fukuda, K., Aebersold, R., Korsching, S., Fann M. and Patterson, P.H. (1989) Science 246, 1412-1416.
- [13] Hull, R.N., Cherry, W.R., and Weaver, G.W. (1976) In Vitro 12, 670-677.
- [14] Lever, J.E. (1979) Proc. Natl. Acad. Sci. USA 76, 1323-1327.
- [15] Amsler, K. and Cook, J.S. (1982) Am. J. Physiol. 242, C94-C101.
- [16] Handler, J.S. (1986) Kidney Int. 30, 208-215.
- [17] Van Den Bosch, L., De Smedt, H. and Borghraef (1989) J. Cell. Physiol. 141, 483-489.
- [18] Miller, J.H. and Heath, L.N. (1989) J. Cell. Physiol. 139, 538-549.
- [19] Rabito, C.A., Kreisberg, J.I. and Wight, D. (1984) J. Biol. Chem. 259, 574-582.